Inorg. Chem. **2005**, 44, 3777−3779

N-H'''**S Hydrogen Bonds in a Ferredoxin Model**

Marc A. Walters,*,† Cara L. Roche,† Arnold L. Rheingold,‡ and Scott W. Kassel‡,§

*Department of Chemistry, New York Uni*V*ersity, New York, New York 10003, and Department of Chemistry and Biochemistry, Uni*V*ersity of California, San Diego, La Jolla, California 92093*

Received December 19, 2004

The Fe4S4 complex {(CH3)3NCH2CONH2}2[Fe4S4(^t BuS)4] (**1**) was synthesized to replicate the ferredoxin active site with a subset of its N−H'''S hydrogen bonds. The two cationic counterions mimic the polypeptide backbone of ferredoxin (Fd) as amide hydrogenbond donors to sulfur atoms of the iron−sulfur cluster. X-ray crystallographic data show that the organic sulfur (S*γ*) of one tertbutylthiolate ligand and one inorganic sulfur of the cluster core serve as N–H…S hydrogen-bond acceptors. The cluster core of complex **1** is tetragonally elongated in contrast to that of Fd, which is tetragonally compressed. This is the first observation of an elongated $[Fe_4S_4]^{2+}$ cluster core. Additionally, this is the first synthetic Fd model in which N-H···S hydrogen bonding to a cluster has been achieved.

Iron-sulfur (Fe-S) proteins are widely distributed in nature, where their predominant function is to transfer electrons. $1-6$ The redox potentials of these proteins differ widely even in cases where the active site cluster structures are congruent. In the $Fe₄S₄$ ferredoxins, the focus of this paper, the median values of the redox potentials for the highpotential ferredoxin (HiPIP) and low-potential ferredoxin (Fd) proteins differ by about 700 mV, which is correlated with the hydrophobicity of the active site environment.^{$7-9$} However, a relatively large range of redox potentials is found

* To whom correspondence should be addressed. E-mail: marc.walters@ nyu.edu.

‡ University of California, San Diego.

§ Permanent address: Department of Chemistry, Villanova Univeristy, Villanova, PA 19085.

- (1) Lovenberg, W., Ed. *Iron*-*Sulfur Proteins. Vol. 1: Biological Properties*; Molecular Biology. An International Series of Monographs and Textbooks; Academic Press: New York, 1973.
- (2) Lovenberg, W., Ed. *Iron*-*Sulfur Proteins. Vol. 2: Molecular Properties*; Molecular Biology. An International Series of Monographs and Textbooks; Academic Press: New York, 1973.
- (3) Lovenberg, W., Ed. *Iron*-*Sulfur Proteins. Vol. 3: Structure and Metabolic Mechanisms*; Molecular Biology. An International Series of Monographs and Textbooks; Academic Press: New York, 1977.
- (4) Spiro, T. G., Ed. *Metal Ions in Biology. Vol. 4: Iron*-*Sulfur Proteins*; : New Yorkm 1982.
- (5) Cammack, R., Ed. *Ad*V*ances in Inorganic Chemistry: Iron*-*Sulfur Proteins*; Academic Press: San Diego, 1992.
- (6) Sykes, A. G., Cammack, R., Eds. *Ad*V*ances in Inorganic Chemistry. Vol. 47: Iron*-*Sulfur Proteins*; Academic Press: San Diego, 1999.
- (7) Stephens, P. J.; Jollie, D. R.; Warshel, A. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶* (7), $2491 - 2513$.

10.1021/ic048208z CCC: \$30.25 © 2005 American Chemical Society **Inorganic Chemistry,** Vol. 44, No. 11, 2005 **3777** Published on Web 04/30/2005

even for the Fd proteins and has been attributed to differences in the dipolar characteristics of the active site.⁷⁻⁹ Significantly, the redox potentials of the proteins (approximately -0.40 V vs SHE) have not been replicated in cluster model compounds, whose relative redox potentials are quite low (approximately -1.3 V vs SCE).^{10,11}

A few synthetic models have been reported in the study of hydrogen bonding and its effects on redox potentials in Fe4S4 ferredoxins. These models employed *o*-amidobenzenethiolate terminal ligands in which N-H···S hydrogen bonding was enforced by proximity and phenyl group rigidity.¹²⁻¹⁶ In this communication, we describe a synthetic model compound, {(CH₃)₃NCH₂CONH₂}₂[Fe₄S₄('BuS)₄] (1), in which N-H'''S hydrogen bonds are donated by amide groups of the counterion $\{(\text{CH}_3)_3\text{NCH}_2\text{CONH}_2\}^+$, carbamoyltrimethylammonium acetamide $(CTA⁺)$. The hydrogenbond acceptors consist of a bridging sulfide of the $Fe₄S₄$ cluster core and the sulfur of a *tert*-butylthiolate terminal ligand. Alkylthiolate terminal ligands are preferred as cysteine analogues in the study of hydrogen bonding.17

Complex **1** was synthesized in 35% yield by the modification of a method originally published by Christou and Garner in the synthesis of $(Et_4N)_2[Fe_4S_4(BuS)_4]$ (2).^{18,19} X-ray diffraction quality crystals were isolated from a $CH₃CN/ether$

- (8) Langen, R.; Jensen, G. M.; Jacob, U.; Stephens, P. J.; Warshel, A. *J. Biol. Chem.* **¹⁹⁹²**, *²⁶⁷* (36), 25625-25627. (9) Backes, G.; Mino, Y.; Loehr, T. M.; Meyer, T. E.; Cusanovich, M.
- A.; Sweeney, W. V.; Adman, E. T.; Sanders-Loehr, J. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³* (6), 2055-2064.
- (10) DePamphilis, B. V.; Averill, B. A.; Herskovitz, T.; Que, L., Jr.; Holm, R. H. *J. Am. Chem. Soc.* **¹⁹⁷⁴**, *⁹⁶* (13), 4159-4167.
- (11) Hagen, K. S.; Watson, A. D.; Holm, R. H. *Inorg. Chem.* **1984**, *23* (19), 2984-2890. (12) Ueyama, N.; Inohara, M.; Ueno, T.; Okamura, T.-A.; Nakamura, A.
- *Polym. J. (Tokyo)* **¹⁹⁹⁷**, *²⁹* (11), 949-951.
- (13) Ueno, T.; Inohara, M.; Ueyama, N.; Nakamura, A. *Bull. Chem. Soc. Jpn.* **¹⁹⁹⁷**, *⁷⁰* (5), 1077-1083. (14) Ueno, T.; Ueyama, N.; Nakamura, A. *J. Chem. Soc., Dalton Trans.*
- **¹⁹⁹⁶**, (*19*), 3859-3863.
- (15) Ueyama, N.; Yamada, Y.; Okamura, T.-A.; Kimura, S.; Nakamura, A. *Inorg. Chem.* **¹⁹⁹⁶**, *³⁵* (22), 6473-6484.
- (16) Nakamura, A.; Ueyama, N. *NATO ASI Ser., Ser. C* **¹⁹⁹⁵**, 457, 265- 279.
- (17) Chung, W. P.; Dewan, J. C.; Tuckerman, M.; Walters, M. A. *Inorg. Chim. Acta* **¹⁹⁹⁹**, *²⁹¹* (1-2), 388-394.
- (18) Christou, G.; Garner, C. D.; Balasubramaniam, A.; Ridge, B.; Rydon, H. N. *Inorg. Synth.* **¹⁹⁸²**, *²¹*, 33-37.
- (19) Christou, G.; Garner, D. *J. Chem. Soc., Dalton Trans.* **¹⁹⁷⁹**, 1093- 1094.

New York University.

Figure 1. (a) ORTEP figure of complex **1** showing 30% probability ellipsoids. The N(2)-H(2B) \cdots S(6A) hydrogen bond to S_γ and the N(2)- $H(2A) \cdots O(1S)$ hydrogen bond to ethyl ether are indicated by dashed lines.
(b) ORTEP figure of complex 1 showing the N(4)-H(4B) \cdots S(3A) hydrogen (b) ORTEP figure of complex **1** showing the $N(4)$ -H(4B) \cdots S(3A) hydrogen hond dimers bond to the inorganic sulfur and the amide-amide hydrogen-bond dimers
formed through N-H**.**...O hydrogen honds formed through N-H'''O hydrogen bonds.

solution containing one extra equivalent of *^t* BuSH. The crystals took the form of black tablets, with the formula $(CTA)_2[Fe_4S_4(BuS)_4]$ **·** $CH_3CH_2OCH_2CH_3$ ²⁰ The sample gave satisfactory elemental analysis satisfactory elemental analysis.

The $UV - vis$ spectrum of 1 in acetonitrile is congruent with that of **2** in having peaks at 308 and 414 nm, characteristic of the *tert*-butylthiolate-ligated $[Fe_4S_4]^{2+}$ cluster.¹⁰ In the proton NMR spectrum of 1, recorded in CD_3 -CN, the *tert*-butyl thiolate resonance appears at its characteristic position of 2.7 ppm. A second smaller peak at 2.9 ppm likely belongs to the protons of a terminal ligand whose resonances are shifted by the hydrogen bonding of sulfur (S*γ*) with a CTA counterion. The amide proton peaks of CTA appear at 6.3 and 6.9 ppm and are shifted from their

diamagnetic solution positions of 8.3 and 7.7 ppm, respectively.²¹

The crystal structure of **1** is shown in Figure 1. On the basis of N-H group orientation and proximity to sulfur, two N-H \cdots S hydrogen bonds are evident between the amide groups of the CTA cations and sulfur atoms of the anionic complex. The $N(2)$ -H $\cdot\cdot\cdot$ S(6) hydrogen bond to thiolate sulfur (S_{γ}) has a length of 3.356(3) Å, which is typical of amide-alkylthiolate hydrogen bonds.17,21,22 By contrast, the $N(4)$ -H $\cdot\cdot\cdot$ S(3) hydrogen bond to inorganic sulfur is relatively long at 3.625(3) Å. Hydrogen-bond contacts are also observed between the counterions themselves, as is commonly found in CTA salts.17,21

In Fd, six of the eight sulfur atoms are $N-H\cdots S$ hydrogenbond acceptors.23,24 Hydrogen bonding is absent at two sulfur sites (sulfide and S*γ*) that lie along one edge of the cluster in a plane that contains the S_4 axis of the tetragonally compressed cluster. Serendipitously, the hydrogen-bond pattern in complex **1** is the precise opposite in that hydrogen bonding occurs exclusively along one edge of the cluster in a plane that contains the S_4 axis.

A recent single-crystal X-ray crystallographic study of *Desulfo*V*ibrio africanus* ferredoxin I shows N-H'''S contacts that conform to Donahue's criteria for hydrogen bonding in which significant N...S distances are confined to the range $3.25 - 3.55$ Å, with hydrogen-bond angles that deviate by less than 25° from 180°. 25,26 Complex **1** displays a longer N-H···S bond to sulfide, but conforms to Donahue's angular criterion for hydrogen bonds. A more recent crystallographic analysis of *Bacillus thermoproteolyticus* ferredoxin reveals hydrogen-bond $N^{...}S_{inorg}$ distances up to 3.68 Å, with N-H \cdot 'S angles that deviate by as much as 59° from linearity.24 The weak hydrogen-bonding contact between the amide and cluster sulfide in complex **1** models the corresponding hydrogen bonds of Fd with reasonable accuracy.

Non-hydrogen-bonding ferredoxin model compounds have tetragonally compressed cores²⁷ (Table 1). These complexes exhibit two approximately parallel $Fe₂S₂$ planes that are perpendicular to a natural or imposed S_4 axis of the core and have relatively long bonds, designated by the symbol ⊥ in Table 1. The planes are separated by a set of four relatively short bonds parallel to the core axis that are designated by the symbol $||$ in Table 1. In fact, tetragonally compressed core structures have been observed for all crystallographically characterized ferredoxin active sites and their model com-

- (21) Walters, M. A.; Dewan, J. C.; Min, C.; Pinto, S. *Inorg. Chem.* **1991**, 30 (12), 2656–2662.
(22) Huang, J.; Ostrander, R. L.; Rheingold, A. L.; Leung, Y.; Walters,
- M. A. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶* (15), 6769-6776.
- (23) Sery, A.; Housset, D.; Serre, L.; Bonicel, J.; Hatchikian, C.; Frey, M.; Roth, M. *Biochemistry* **¹⁹⁹⁴**, *³³* (51), 15408-15417.
- (24) Fukuyama, K.; Okada, T.; Kakuta, Y.; Takahashi, Y. *J. Mol. Biol.* **²⁰⁰²**, *³¹⁵*, (5), 1155-1166.
- (25) Donohue, J. *J. Mol. Biol.* **¹⁹⁶⁹**, *⁴⁵* (2), 231-235.
- (26) Davy, S. L.; Osborne, M. J.; Moore, G. R. *J. Mol. Biol.* **1998**, *277* (3), 683-706. (27) Mascharak, P. K.; Hagen, K. S.; Spence, J. T.; Holm, R. H. *Inorg.*
- *Chim. Acta* **¹⁹⁸³**, *⁸⁰* (3), 157-170.

⁽²⁰⁾ Crystallographic data for $(CTA)_{2}$ [Fe₄S₄(t BuS)₄] \cdot CH₃CH₂OCH₂CH₃: $a = 11.8690(8)$ Å, $b = 24.1803(16)$ Å, $c = 17.5712(11)$ Å, $\alpha = 90^{\circ}$, *a* = 11.8690(8) Å, *b* = 24.1803(16) Å, *c* = 17.5712(11) Å, α = 90°,
 β = 93.3790(10)°, *γ* = 90°, *μ* = 1.492 mm⁻¹, *V* = 5034.1(6) Å³, *Z*

= 4 space group *P*2(1)/*n T* = 213(2) K λ = 0.71073 Å D_{obat} = $\hat{P}_1 = 4$, space group $\hat{P}_2(1)/n$, $\hat{T} = 213(2)$ K, $\lambda = 0.71073$ Å, $\hat{D}_{\text{calcd}} =$ 1.342 g cm⁻³. Final R indices $[I > 2\sigma(I)]$: R1 = 0.0483, wR2 = 0.1197. R indices (all data): $R1 = 0.0608$, wR2 = 0.1277.

Table 1. Structural Comparisons of Selected $[Fe_4S_4^*(PuS)_4]^{2-}$ Clusters

	distance (\AA)			volume $(\AA^3)^d$		
counterion	$Fe-Fe$	$Fe-S^*$	$Fe-SR$	Fe ₄	S_4	Fe ₄ S ₄
$BzNMe3 + a$	$2.734 \pm b$ $2.767(10)$ c	$2.315(5) \perp$ $2.252(8)$	2.261(3)		2.45 5.55	9.68
Et_4N^+a	$2.749(2) \perp$ $2.764(3)$	$2.294(2)$ \perp $2.274(3)$	2.254(3)		2.47 5.53	9.69
$CTA^+(1)$	$2.7309(6) \perp$ $2.7424(6)$	$2.2722(9)$ \perp $2.3167(9)$	2.2541(9)	2.24 5.55		9.61

^a Mascharak, P. K.; Hagen, K. S.; Spence, J. T.; Holm, R. H. *Inorg. Chim. Acta* **1983**, *80* (3), 157. *^b* Bonds in planes perpendicular to the S4 axis. *^c* Bonds in planes parallel to the S4 axis. *^d* Edgell, J. J., Jr.; Brown, M. J. In *Electronic Proceedings of the 8th International Conference on Technology in Collegiate Mathematics*; Addison-Wesley: Boston, 1995; Paper 8-C92 (http://archives.math.utk.edu/ICTCM).

plexes, $[Fe_4S_4(SR)_4]^n$, with *alkyl*thiolate terminal ligands in all three of their accessible oxidation states $(n = 1-3)$.^{11,28,29}

The formation of hydrogen bonds in complex **1** results in a departure from the previously observed structural motif of $Fe₄S₄$ clusters. The complex has D_{2d} symmetry like that noted earlier for the complex $[Fe_4S_4$ ^{(r}BuS)₄]²⁻ in a non-hydrogenbonding environment, for example, with Et_4N^+ counterions.²⁷ Viewed in greater detail, the symmetry of complex **1** is lowered somewhat by $N-H\cdots S$ hydrogen bonding to $S(6)$. The Fe(2)-S(6) bond is slightly longer, at 2.2624(9) Å, than the other three iron thiolate bonds, which range from 2.2441- (9) to $2.2563(9)$ Å (Table 1). No systematic effects on the other internuclear distances are observed except for a *tetragonal elongation* of the core. The four bonds parallel to the S_4 axis have an average length of 2.3167(9) Å, whereas the eight bonds that define the two $Fe₂S₂$ planes that are perpendicular to the axis have an average length of 2.2722- (9) Å.

COMMUNICATION

According to one view, the $[Fe_4S_4]^{2+}$ core can be represented as two reduced two-iron centers, $[Fe₂S₂]$ ¹⁺, that form parallel horizontal planes that are joined by antiferromagnetic coupling.^{30,31} It is possible that hydrogen bonding to one inorganic sulfur atom could disrupt the symmetry and give rise to a net elongation of the $[Fe_4S_4]^{2+}$ core. An alternative view posits an intrinsic stereochemical softness of the reduced $[Fe_4S_4]$ ¹⁺ core to explain the occurrence of (unexpected) tetragonally compressed structures with alkylthiolate terminal ligands and elongated structures with benzenethiolate terminal ligands.²⁹ The reduced core structure could be subject to extrinsic environmental effects in the solid state. The more oxidized $[Fe_4S_4]^{2+}$ cores might share this property. Complex **1** provides a system in which such questions can be explored. The $N-H\cdots S(3)$ hydrogen bond is the first to be reported to inorganic sulfur in an $Fe₄S₄$ model complex. Through further spectroscopic analysis complex **1** might provide insight into the nature of amide-sulfide hydrogen bonds and their effects on the electronic structure and function of the Fd active site.

Acknowledgment. Mr. Justin Barad assisted with the computation of cluster core volumes. The project was supported by NSF CHE-0316608 (M.A.W.).

Supporting Information Available: Listings of crystallographic data of (CTA)₂[Fe₄S₄('BuS)₄]·CH₃CH₂OCH₂CH₃. (CIF), synthetic
protocols, elemental analyses, $I W = \text{vis}$, and H NMP characterizaprotocols, elemental analyses, UV-vis, and H NMR characterization of complex **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC048208Z

⁽²⁸⁾ O'Sullivan, T.; Millar, M. M. *J. Am. Chem. Soc.* **¹⁹⁸⁵**, *¹⁰⁷* (13), 4096- 4097.

⁽²⁹⁾ Carney, M. J.; Papaefthymiou, G. C.; Spartalian, K.; Frankel, R. B.; Holm, R. H. *J. Am. Chem. Soc.* **¹⁹⁸⁸**, *¹¹⁰* (18), 6084-6095.

⁽³⁰⁾ Noodleman, L.; Norman, J. G., Jr.; Osborne, J. H.; Aizman, A.; Case, D. A. *J. Am. Chem. Soc.* **¹⁹⁸⁵**, *¹⁰⁷* (12), 3418-3426.

Dickson, D. P. E.; Johnson, C. E.; Thompson, C. L.; Cammack, R.; Evans, M. C. W.; Hall, D. O.; Rao, K. K.; Weser, U. *J. Phys.* **1974**, (6) , 343-346.